
MF#K - Introductory Course in F#
@ Skillshouse 2014-05-19

Mødegruppe for ƒunktionelle Københavnere
(MF#K)

Overview

• About me

• Matching of expectations

• Agenda
– 09:00 |> Short introduction to F# (sales pitch)

– 09:15 |> Environment setup, Basics and Domain modeling

– 10:15 |> Break

– 10:30 |> .NET applications / libraries

– 11:30 |> Lunch

– 12:30 |> Data and TypeProviders

– 13:30 |> Break

– 13:45 |> Parallelism and concurrency

– 14:45 |> Break

– 15:00 |> Robust and bulletproof applications

– 16:00 |> Summary: U want more?

About me (very shortly)

• Ramón Soto Mathiesen

• MSc. Computer Science from DIKU (Minors in Mathematics)

• Managing Specialist |> CTO of CRM Department @ Delegate A/S

– ER-modeling, WSDL, OData (REST API)

• F# / C# / JavaScript / C++: Delegate A/S @ GitHub

• Blog: http://blog.stermon.com/

http://delegateas.github.io/
http://blog.stermon.com/

Matching of expectations

• What are you expectations for this course?

Matching of expectations

• Ƒunctional Copenhageners Meetup Group will try to get more
and more software projects to be based on functional
programming languages. We mainly focus on F# and Haskell,
but other functional programming languages ​​like Scala, Lisp,
Erlang, Clojure, OCaml, etc. are more than welcome.

• We noticed that customers would like to get “proper training”
in F# and that’s why we are standing here today. We are also
expecting an increase in the need for training so we can attract
renowned trainers to Denmark (Phil Trelford, Tomas Petricek, …)

• We expect that our attendees to this introductory course in F#,
will be able to make production-ready application afterwards

Short introduction to F# (sales pitch) - Buzzwords

• less code, error-free projects, only one code base, big data,
parallelism, concurrency, asynchronous processes

Short introduction to F# (sales pitch) - F# - What is it?

• Is an open-source, strongly typed, multi-paradigm
programming language encompassing functional, imperative
and object-oriented designed by Don Syme (MS Research
Cambridge UK) and maintained by Microsoft, F# Software
Foundation and open contributors

• It’s a mature language that is part of Visual Studio and the .NET
Framework

• Loved by the very talented who contribute to it for free with
sometimes very usable projects:

– Special mention to (among others):

• Tomas Petricek (TomASP.NET)

• Scott Wlaschin (F# for fun and profit)

http://tomasp.net/
http://fsharpforfunandprofit.com/

Short introduction to F# (sales pitch) - F# - Why use it?

• Conciseness

• Convenience

• Correctness

• Concurrency

• Completeness

Short introduction to F# (sales pitch) - F# - Why use it?

• Conciseness:

– F# is not cluttered up with coding noise such as curly brackets,
semicolons and so on

– You almost never have to specify the type of an object, thanks to a
powerful type inference system.

– And, compared with C#, it generally takes fewer lines of code to solve
the same problem

let swap (x,y) = y,x
let foo = swap(42,0)
let bar = swap("42","0")

> val swap : x:'a * y:'b -> 'b * 'a
> val foo : int * int = (0, 42)
> val bar : string * string = ("0", "42")

Short introduction to F# (sales pitch) - F# - Why use it?

• Convenience:

– Many common programming tasks are much simpler in F#. This
includes things like creating and using complex type definitions,
doing list processing, comparison and equality, state machines, and
much more

– And because functions are first class objects, it is very easy to create
powerful and reusable code by creating functions that have other
functions as parameters, or that combine existing functions to
create new functionality

let f g x = g x
f (fun x -> x * x) 42

> val f : g:('a -> 'b) -> x:'a -> 'b
> val it : int= 1764

Short introduction to F# (sales pitch) - F# - Why use it?

• Correctness:

– F# has a powerful type system which prevents many common errors
such as null reference exceptions.

– Values are immutable by default, which prevents a large class of
errors

– In addition, you can often encode business logic using the type
system itself in such a way that it is actually impossible to write
incorrect code or mix up units of measure, greatly reducing the need
for unit tests

[<Measure>] type DKK
[<Measure>] type USD
let rate : float<USD/DKK> = 0.2<USD/DKK>
let usd2dkk (amount: float<USD>) = amount / rate
type OpportunityDK = { Customer : string; Amount : float<DKK> }
type OpportunityUS = { Customer : string; Amount : float<USD> }
type Opportunities = | DK of OpportunityDK | US of OpportunityUS
let odk0 = { OpportunityDK.Customer = "Skillshouse A/S"; Amount = 42.<DKK> }
let odk1 = { OpportunityDK.Customer = "Microsoft Danmark ApS"; Amount = 42.<DKK> }
let ous2 = { OpportunityUS.Customer = "Microsoft Redmond HQ"; Amount = 42.<USD> }
[DK(odk0); DK(odk1); US(ous2);]
|> List.map(fun x -> match x with | DK y -> y.Amount | US y -> usd2dkk y.Amount)
|> List.reduce(+)

Short introduction to F# (sales pitch) - F# - Why use it?

• Concurrency:

– F# has a number of built-in libraries to help when more than one
thing at a time is happening. Asynchronous programming is very
easy, as is parallelism. F# also has a built-in actor model, and
excellent support for event handling and functional reactive
programming

– And of course, because data structures are immutable by default,
sharing state and avoiding locks is much easier

[|0 .. 10 .. (1 <<< 16)|]
|> Array.map(fun x -> x * x)
[|0 .. 10 .. (1 <<< 16)|]
|> Array.Parallel.map(fun x -> x * x)

Short introduction to F# (sales pitch) - F# - Why use it?

• Completeness:

– Of course, F# is part of the .NET ecosystem, which gives you
seamless access to all the third party .NET libraries and tools.

– Finally, it is well integrated with Visual Studio, which means you get
a great IDE with IntelliSense support, a debugger, and many plug-ins
for unit tests, source control, and other development tasks

– Although it is a functional language at heart, F# does support other
styles which are not 100% pure, which makes it much easier to
interact with the non-pure world of web sites, databases, other
applications, and so on. In particular, F# is designed as a hybrid
functional/OO language, so it can do virtually everything that C# can
do except …

open System
let ts () = DateTime.Now.ToString("o") // ISO-8601
let ts' () = (ts ()).Replace(":", String.Empty) // Filename safe
let cw (s:string) = Console.WriteLine(s)
let cew (s:string) = Console.Error.WriteLine(s)

Short introduction to F# (sales pitch) - F# - Why use it?

Hands-on

– 09:15 |> Environment setup, Basics and Domain modeling

– 10:15 |> Break

– 10:30 |> .NET applications / libraries

– 11:30 |> Lunch

– 12:30 |> Data and TypeProviders

– 13:30 |> Break

– 13:45 |> Parallelism and concurrency

– 14:45 |> Break

– 15:00 |> Robust and bulletproof applications

Hands-on: Environment setup, Basics and Domain modeling

• Environment setup
– MS Visual Studio 2013 Pro/Premium
– Visual F# Power Tools

• Basics
– Types / functions (F#) vs. Classes / Methods (C#)
– Non-mutable data structures vs. mutable data structures
– Recursion / tail recursion vs. for / while loops
– Some v / None vs. null checks
– HelloWorld.fsx (Your First F# script)

1. Print “Hello World!” to the Console
2. Print a folders hierarchical structure, files/folder, to the Console

• Domain modeling
– Define the business logic as types and limit the possibility of wrong code

(fewer errors, found on compile time, not runtime)
– HelloWorldLibDomainTypes.fs

1. Define the Domain model for “Hello World!” (Union types vs Types)
2. Define the Domain model for a card game

http://visualstudiogallery.msdn.microsoft.com/136b942e-9f2c-4c0b-8bac-86d774189cff

Hands-on: .NET applications / libraries

• .NET applications / libraries

– Write Unit Test and test code without having to build the final library
or application

• SetupUnitTests.fsx based on ovatsus/Setup.fsx

• Hook up to .fsproj Target Name="BeforeBuild"

– HelloWorld.dll (Your First F# library)

• Re-use previous data model

• Signatures, Modules, HelperModules, UnitTests, …

– HelloWorld.exe (Your First F # console application)

• Call functions from the modules from the above library (assembly)

https://gist.github.com/ovatsus/2062683
https://gist.github.com/ovatsus/2062683
https://gist.github.com/ovatsus/2062683

Hands-on: Data and TypeProviders

• Data and TypeProviders
– Sequences, lists, arrays, multidimensional arrays, maps, sets (set)

– Create types dynamically from your database using TypeProviders in
your IDE ("erased types")

– HelloWorldTypeProvider.dll (Your First F# Type Provider)
1. Read first: Type Providers From the Ground Up from Mavnn's blog

2. Install: Nuget FSharp.TypeProviders.StarterPack

3. Inspiration: Phil Trelford's Date Types

4. Create the types so when the TypeProvider is called with Visual Studios
(“.”  intellisense) it will only provide “H” and when intellisense is
called again it will provide “e” and so on until the last letter “!” will
return the full string: “Hello World!”

5. Create a TypeProvider that when called with Visual Studios intellisense
will present the course categories from SkillsHouse. When a category is
chosen, the available list are presented. A record containing the
common information will be returned when a course is selected

http://blog.mavnn.co.uk/type-providers-from-the-ground-up/
https://www.nuget.org/packages/FSharp.TypeProviders.StarterPack/
http://trelford.com/blog/post/dates.aspx

Hands-on: Parallelism and concurrency

• Parallelism and concurrency

– Go from a sequential algorithm to a parallel by changing a few lines
of code

– HelloWorldParallel.exe and HelloWorldAsync.exe (Your first parallel /
asynchronous applications)

1. Retrieve the names and urls for all the programming languages in the
following Wikipedia article: List of programming languages

2. For each of the retrieved urls, check for each of the Wikipedia article if
there is a “Hello World!” example in their respective articles

3. Parallelize the algorithm

4. Async and parallelize the algorithm

http://en.wikipedia.org/wiki/List_of_programming_languages

Hands-on: Robust and bulletproof applications

• Robust and bulletproof applications

– Recipe for making robust and error-free applications using Some v /
None and Computational Expressions

– HelloWorldBulletproof.exe (Your first robust F# application)

• Re-use your application from “.NET applications / libraries” and add
Some v / None to all the functions

• Implement a non-deterministic function that it will either return Some
value or an Exception (failwith)

• Ensure that you application keeps running no matter how many “minor”
Exceptions are thrown

• Remark: Look into “Maybe Computational Expression” / >>= operator:

– Scott Wlaschin: Railway oriented programming

– Ramón Soto Mathiesen: Recipe for bulletproof applications with F#

http://fsharpforfunandprofit.com/posts/recipe-part2/
http://fsharpforfunandprofit.com/posts/recipe-part2/
http://fsharpforfunandprofit.com/posts/recipe-part2/
http://blog.stermon.com/articles/2014/01/30/recipe-for-bulletproof-applications/

U want more?

• Code will be available @ https://github.com/gentauro

• Slides will be available @ MF#K (Files)

• Sign up @ MF#K for:

– More fun

– Hands-on:

• Tomas Petricek: FsLab and F# type-providers hands-on (2014-06-10)

– Talks:

• In the pipeline talks about: Erlang, Haskell, Rust, ...

– Up next: Erlang in general and Haskell with CUDA (May month)

• MF#K would like to thank our sponsors:

https://github.com/gentauro
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/files/
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/events/183190562/

