
Delegate.Sandbox:
I/O side-effects safe computations in F#

@ Prosa 2015-09-29

F#unctional Copenhageners Meetup Group
(MF#K)

Overview

• About me

• F#unctional Copenhageners Meetup Group (MF#K)

• Delegate.Sandbox:

– What is it and why it was created

– How it works and limitations

• Initial release

• Upcoming version (will be submitted to GitHub after talk)

• (Probably) Final version (I/O safe libraries at compile time)

– Demo: Show me some code

• Q & A

• We eat the cake and go for some beers @ Ørsted Ølbar

– http://oerstedoelbar.dk/

http://oerstedoelbar.dk/

About me (very shortly)

• Ramón Soto Mathiesen

• MSc. Computer Science DIKU and minors in Mathematics HCØ

• Managing Specialist / CTO of CRM Department @ Delegate A/S

– ER-modeling, WSDL, OData (REST API)

• F# / C# / JavaScript / C++

• Blog: http://blog.stermon.com/

http://blog.stermon.com/

F#unctional Copenhageners Meetup Group (MF#K)

• F#unctional Copenhageners Meetup Group will try to get more
and more software projects to be based on functional
programming languages.

• We mainly focus on F# and Haskell, but other functional
programming languages ​​like Scala, Lisp, Erlang, Clojure, etc. are
more than welcome.

• We expect to meet at least twelve times a year, if not more, to
share experiences with regards of the use of functional
programming languages ​​in software projects that are in / or
heading to production.

Delegate.Sandbox: What is it …

• It’s library that provides a Computation Expression named
SandboxBuilder, sandbox{ return 42 }, which ensures that
values returned from the computation are I/O side-effects safe
(IOSafe) and if not, they are marked as unsafe (Unsafe) and
returning an exception.

• The library allows to bind (>>=) several sandbox computations
together in order to create side-effect free code and based on
the final result, then proceed to perform the desired side-
effects.

• To troll Haskell People: Haskell Is Exceptionally Unsafe

Delegate.Sandbox: … and why it was created

https://existentialtype.wordpress.com/2012/08/14/haskell-is-exceptionally-unsafe/

Delegate.Sandbox: … and why it was created

• To troll Haskell People (just kidding) 

• Seriously, the reason is that most developers don’t really know
which I/O side-effects are performed under their application (a
simple example, slightly less harmful):

– You have deployed DEBUG code to a production system where the
application uses a lot of resources to write to the console or a log file.

Delegate.Sandbox: … and why it was created (extended example)

• But mostly to be able to ensure correctness for business critical
applications (another example, pretty harmful):

– You are using a proprietary (and non open sourced) 3rd party library
that has a hashing algorithm for username/password with a grain of
salt.

– You write your code with the library, and deploy to production.
Everyone's happy until the customer tells you that all of their
usernames have been compromised.

– You think to yourself: "How the MF#K?".

Delegate.Sandbox: … and why it was created (extended example)

• But mostly to be able to ensure correctness for business critical
applications (another example, continuation):

– What if you were using Delegate.Sandbox? Lets look into the
following code:

– When you run your tests, you find out that the library actually has
some not-expected side-effects. You proceed to use a decompiler
(dotPeek) and you find out that there is a piece of code that send
people's user names and passwords in "clear text" to cyka@blyat.ru
by using System.Net.Mail

let hashUsrPwd usr pwd salt =
sandbox { return CompanyA.Fancy.Library.hash user pwd salt}

hashUsrPwd "john.doe@companyB.com" "pass@word1" "peterpandam" |> function
| Unsafe e -> raise e // Hmmmm, somebody is performing side-effects
| IOSafe hash -> () (* Saving to DB goes here *)

mailto:cyka@blyat.ru

Delegate.Sandbox: … and why it was created (extended example)

Delegate.Sandbox: How it works and limitations (Initial release)

• The library is built on top of the AppDomain Class which allows
to Run Partially Trusted Code in a Sandbox (.NET).

• The SandboxBuilder is only allowed to execute code
(SecurityPermissionFlag.Execution), which is the minimum
permission that can be granted (Principle of least privilege)

https://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/bb763046(v=vs.110).aspx
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Delegate.Sandbox: How it works and limitations (Initial release)

• Example of C# code taken from Run Partially Trusted Code in a
Sandbox:

• We can agree that this is not very idiomatic right?

public void ExecuteUntrustedCode(string assemblyName, string typeName, string entryPoint, Object[] parameters)
{

//Load the MethodInfo for a method in the new assembly. This might be a method you know, or
//you can use Assembly.EntryPoint to get to the entry point in an executable.
MethodInfo target = Assembly.Load(assemblyName).GetType(typeName).GetMethod(entryPoint);
try
{

// Invoke the method.
target.Invoke(null, parameters);

}
catch (Exception ex)
{

//When information is obtained from a SecurityException extra information is provided if it is
//accessed in full-trust.
(new PermissionSet(PermissionState.Unrestricted)).Assert();
Console.WriteLine("SecurityException caught:\n{0}", ex.ToString());
CodeAccessPermission.RevertAssert();
Console.ReadLine();

}
}

https://msdn.microsoft.com/en-us/library/bb763046(v=vs.110).aspx

Delegate.Sandbox: How it works and limitations (Initial release)

• sandbox is implemented as a computation expression that only
implements:

– A return method (Return : v:'b -> 'b IOEffect), which ensures that
values returning from the computation are of the desired value type.

– A delay method (Delay : f:(unit -> 'a IOEffect) -> 'a IOEffect), which
tries to evaluate the function at the newly created domain
(AppDomain) with the minimum granted permission instead of the
executing AppDomain.CurrentDomain. If the function evaluation is
successful then an IOSafe 'a value is returned, otherwise an Unsafe
Exception is returned.

Note: “delay is similar to the reify operation of Filinski [4]” -- Tomas
Petricek and Don Syme (The F# Computation Expression Zoo paper)

http://research.microsoft.com/pubs/217375/computation-zoo.pdf

Delegate.Sandbox: How it works and limitations (Initial release)

• Very simple implementation (5 lines of code):

Note: SecurityPermissionAttribute  SecurityAction.PermitOnly 
Execution = true fixed a major bug (more on this later on)

Return
Type ‘a IOEffect

Delay
Type unit -> ‘a

IOEffect

Run
Type ‘a IOEffect

(not implemented)

[<Sealed>]
type SandboxBuilder() =

inherit MarshalByRefObject()
member x.Return v = IOSafe v
[<SecurityPermissionAttribute(SecurityAction.PermitOnly, Execution = true)>]
member x.Delay f = try f() with ex -> Unsafe ex

Delegate.Sandbox: How it works and limitations (Initial release)

• In order to ensure that IOEffect types are only instantiated from
inside the computation expression. A few examples of
undesired behavior:

– IOSafe “42”

– IOSafe (fun _ -> Directory.EnumerateFiles(".") |> Seq.length)

• We use type encapsulation and we afterwards expose them
with the help of active patterns.
type 'a IOEffect = private | IOSafe of 'a | Unsafe of exn

with
override x.ToString() = x |> function

| IOSafe s -> sprintf "IOSafe %s" (s.ToString())
| Unsafe e -> sprintf "Unsafe %A" e

let (|IOSafe|Unsafe|) = function | IOSafe s -> IOSafe s | Unsafe e -> Unsafe e

Delegate.Sandbox: How it works and limitations (Initial release)

• The computation and bindings works like the Either Monad
where you either have a value of the type IOSafe or you have an
Exception of the type Unsafe. The main point here is that the
I/O side-effect are NOT performed and the computation
catches the attempt by tainting the whole expression and
providing the thrown Exception which can be re-thrown or
logged in order to revise and fix the code.

Delegate.Sandbox: How it works and limitations (Initial release)

• To remove System.Console I/O side-effects, we need to execute
some SecurityPermissionFlag.UnmanagedCode before we
instantiate the SandboxBuilder. This is handled by
RemoveConsoleIO. When the type is instantiated, the
System.Console.SetIn, System.Console.SetOut and
System.Console.SetError are set to Stream.Null. Once this task
is performed, the SecurityPermissionFlag.UnmanagedCode flag
is removed in order for the new AppDomain runs with the
minimal permission possible (more on this later on).

Delegate.Sandbox: How it works and limitations (Examples)

• The following code:

• Evaluates to:

Sum of x and y and then power2: IOSafe 1764

Note: No output is written to the console

• The following code:

• Evaluates to

Prints only 'IOSafe FooBar': IOSafe FooBar

Note: No blocking readline or input from console.

open System
open System.IO
open Delegate.Sandbox

let addition x y = sandbox{ return x + y }
let power2 x = sandbox{ printfn "Injected side-effect"; return x * x }
let result = addition 21 21 >>= power2

printfn "Sum of x and y, then power2: %A" result

let fooBar = sandbox{ return Console.ReadLine() + "FooBar" }

printfn "Prints only 'IOSafe FooBar': %A" fooBar

Delegate.Sandbox: How it works and limitations (Initial release)

• We describe a few limitations we found while we were making
the library:

– No code optimization: When a project that refers to the library is
built in Release mode, default is set to Optimize code, then it will not
work as some of the code is transformed to use Reflection which is
not supported in the AppDomain.

– Unit tests: As stated before, Reflection is not supported and because
NUnit uses this approach to execute the test, then it will not work
either. This makes it really difficult to test code, mostly because
Unsafe types are runtime and not compile time.

– F# Interactive (fsiAnyCpu.exe): As the computation expression is
built on top of the AppDomain, it will not be possible to use this
library in interactive mode (scripts, ...).

• Not to be used in production 

Delegate.Sandbox: How it works and limitations (Upcoming version)

• We describe a few limitations we found while we were making
the library:

– No code optimization: When a project that refers to the library is
built in Release mode, default is set to Optimize code, then it will not
work as some of the code is transformed to use Reflection which is
not supported in the AppDomain.

– Unit tests: As stated before, Reflection is not supported and because
NUnit uses this approach to execute the test, then it will not work
either. This makes it really difficult to test code, mostly because
Unsafe types are runtime and not compile time.

– F# Interactive (fsiAnyCpu.exe): As the computation expression is
built on top of the AppDomain, it will not be possible to use this
library in interactive mode (scripts, ...).

Delegate.Sandbox: How it works and limitations (Upcoming version)

• Release Notes (version 1.5 - July 30 2015)

– Major code refactoring (less code, more awesomeness)

– Fixed critical security permission issue (unmanaged code could be
invoked in sandbox)

– Fixed issue with No code optimization in Release mode

– Fixed issue with Unit tests. See Delegate.Sandbox.Tests project

– Added support for nested sandboxes. Ex: sandbox{ return sandbox{
return 42 } }

– Thanks to nested sandboxes, it's now possible to ensure that a library
is 100% I/O side-effects safe if FSharp.Compiler.Services are used in
combination with a Post-Build F# script (will be made available in
v.2.0.0.0)

• Production Ready 

Delegate.Sandbox: How it works and limitations (Upcoming version)

• Fixed critical security permission issue (unmanaged code could
be invoked in sandbox)

– Once an AppDomain is instantiated with some permissions, it’s not
possible to remove them afterwards.

– The library needs unmanaged code permissions to remove Console
I/O effects (PInvoke to Win32 API). They must be added when the
AppDomain is instantiated.

– As it is not possible to remove the unmanaged code permissions, we
just limit what is possible to evaluate in the continuation builder
[<Sealed>]
type SandboxBuilder() =
...
[<SecurityPermissionAttribute(SecurityAction.PermitOnly, Execution = true)>]
member x.Delay f = try f() with ex -> Unsafe ex

Delegate.Sandbox: How it works and limitations (Upcoming version)

• The following three issues/features are resolved by re-using the
initial AppDomain (no need for reflection anymore):

– Fixed issue with No code optimization in Release mode

– Fixed issue with Unit tests. See Delegate.Sandbox.Tests project

– Added support for nested sandboxes. Ex: sandbox{ return sandbox{
return 42 } }

let private sandboxDomain,sandboxType =
match AppDomain.CurrentDomain.GetData("domain"),

AppDomain.CurrentDomain.GetData("typeof") with
| null,_ | _,null ->

...
// Most likely not theadsafe but it's always the same value so ...
do sandboxDomain'.SetData("domain", sandboxDomain' :> obj)
do sandboxDomain'.SetData("typeof", sandboxType' :> obj)
...

Delegate.Sandbox: How it works and limitations (Final version)

• Thanks to nested sandboxes, it's now possible to ensure that a
library is 100% I/O side-effects safe if FSharp.Compiler.Services
are used in combination with a Post-Build F# script

Note: Will be made available in v.2.0.

Delegate.Sandbox: How it works and limitations (Final version)

• Without nested sandboxes the following code is possible. F# is
not pure, therefore it’s not just enough with the function
signature:

• Therefore we need to traverse the parsed tree of each file that
is part of the library and ensure that all branches have a
SynExpr.App (Ident sandbox)

type FooBar = int IOEffect -> int IOEffect

let fooBar : FooBar =
fun iosafe ->

Directory.EnumerateFiles(".") |> Seq.length |> ignore // Do nasty stuff
iosafe // Just return safe input value

Delegate.Sandbox: How it works and limitations (Final version)

• Compiler Services: Processing untyped syntax tree

#r "packages/FSharp.Compiler.Service/lib/net45/FSharp.Compiler.Service.dll”
open System
open System.IO
open Microsoft.FSharp.Compiler.Ast
open Microsoft.FSharp.Compiler.Range
open Microsoft.FSharp.Compiler.SourceCodeServices

let untypedTree file =
let code = File.ReadAllText file
let checker = FSharpChecker.Create()
let projOptions =

checker.GetProjectOptionsFromScript(file, "()")
|> Async.RunSynchronously

let parseFileResults =
checker.ParseFileInProject(file, code, projOptions)
|> Async.RunSynchronously

let ast =
match parseFileResults.ParseTree with
| Some tree -> tree
| None -> failwith "Something went wrong during parsing!”

ast

let file = Path.Combine(__SOURCE_DIRECTORY__,@"Program.fs")

let walker =
{ new AstTraversal.AstVisitorBase<_>() with

member this.VisitExpr(_path, traverseSynExpr, defaultTraverse, expr) =
match expr with
| SynExpr.App(_, false, (SynExpr.Ident(ident)), _, m)

when ident.idText = "sandbox”
-> Some (expr.Range)

| _ -> defaultTraverse(expr) }

AstTraversal.Traverse(pos0, untypedTree file, walker)

https://fsharp.github.io/FSharp.Compiler.Service/untypedtree.html

Delegate.Sandbox: How it works and limitations (Final version)

Library
(I/O safe)

SynExpr
App (sandbox)

SynExpr
App (sandbox)

SynExpr
App (sandbox)

SynExpr
App (sandbox)

SynExpr
App (sandbox)

SynExpr
App (sandbox)

SynExpr
App (sandbox)

• I/O safe libraries at compile time (parsed tree for each file)

Delegate.Sandbox: Demo - Show me some code

Q & A

Questions?

U want more?

• Code is available @:

– https://github.com/delegateas/Delegate.Sandbox

• Slides will be available @ MF#K (Files)

• Sign up @ MF#K for:

– More fun

– Hands-on:

• None so far …

– Talks:

• In the pipeline talks about: Rust, F# ...

– Upcoming: DST.Statistikbank.TypeProvider

• MF#K would like to thank our sponsor(s):

https://github.com/delegateas/Delegate.Sandbox
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/files/
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/

