
Semantic Versioning for .NET libraries and 
NuGet packages (C#/F#)

MF#K November 2016 Meetup
@Prosa 2016-11-29



2016-11-29 2 / 24

Overview

● About me

● Semantic Versioning

● elm-package bump and diff

● SpiseMisu.SemanticVersioning library

● Demo

● Q & A



2016-11-29 3 / 24

About me (very shortly)

● Ramón Soto Mathiesen

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ

● CompSci @ SPISE MISU ApS

– “If I have seen further it is by standing on the shoulders of giants”
-- Isaac Newton (Yeah Science, Bitch … Mostly mathematics)

– Elm with a bit of Haskell and a bit of F# (fast prototyping)

● Elm / Haskell / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

● Blog: http://blog.stermon.com/ 

https://spisemisu.com/
http://blog.stermon.com/


2016-11-29 4 / 24

Semantic Versioning (SemVer)

● “In the world of software management there exists a dread 
place called dependency hell”

– “The bigger your system grows and the more packages you integrate 
into your software, the more likely you are to find yourself in it”

●  If dependencies are specified too loosely, you will probably 
end up breaking your build more than desired

● So how to solve this? With a few rules, enforced by 
documentation or the code itself, ...



2016-11-29 5 / 24

Semantic Versioning (SemVer)

● … given a version number (MAJOR.MINOR.PATCH), 
increment the:

– MAJOR version when you make incompatible API changes,

– MINOR version when you add functionality in a backwards-
compatible manner, and

– PATCH version when you make backwards-compatible bug 
fixes

● Source: http://semver.org/ 

http://semver.org/


2016-11-29 6 / 24

elm-package bump

● Elm package version rules:

– Versions all have exactly three parts: MAJOR.MINOR.PATCH ✓

– All packages start with initial version 1.0.0 ✓

– Versions are incremented based on how the API changes:
● PATCH - the API is the same, no risk of breaking code ✓

● MINOR - values have been added, existing values are unchanged ✓

● MAJOR - existing values have been changed or removed ✓

● elm-package will bump versions for you, automatically 
enforcing these rules ✓✓✓ (DING DING DING MF#K)

https://github.com/elm-lang/elm-package#version-rules
https://youtu.be/h5I5UYxajnQ?t=445


2016-11-29 7 / 24

elm-package diff (+bump)

● Show the changes between versions:



2016-11-29 8 / 24

Rust and others should as well

● Rust (suggestion for cargo):

– Signature based API comparison

● Haskell (why does cabal or stack not have this?):

– semver-0.3.3.1

Note: We all tried to use a given package that failed to install 
due to issues with dependent packages right? Frustration 
most of the time tend to dropping a given package and 
sometimes even moving on to other languages ...

https://users.rust-lang.org/t/signature-based-api-comparison/2377
https://hackage.haskell.org/package/semver


2016-11-29 9 / 24

SpiseMisu.SemanticVersioning

● My proposal of SemVer for .NET libraries as well as for NuGet 
packages

– Support for both C#/F# (VB? Say JUAT?)

● As with Elm, I would like the rules to be enforcement by the 
code itself, instead of by humans. Otherwise we would be back 
to square one as humans tend to fail with repetitive task

● Elm has it easy as everything is Open Source, therefore source 
code can be parsed while with .NET (proprietary libraries) ...



2016-11-29 10 / 24

SpiseMisu.SemanticVersioning

● Handle cases like the Fsharp.Core does (Reflection):

– FSharp.Core.Unittests
– LibraryTestFx.fs#L93

– LibraryTestFx.fs#L103-L110

asm.GetExportedTypes()
...

(* extract canonical string form for every public member of every type *)
seq {
    yield! t.GetRuntimeEvents()     |> Seq.filter (fun m -> m.AddMethod.IsPublic) |> Seq.map cast
    yield! t.GetRuntimeProperties() |> Seq.filter (fun m -> m.GetMethod.IsPublic) |> Seq.map cast
    yield! t.GetRuntimeMethods()    |> Seq.filter (fun m -> m.IsPublic) |> Seq.map cast
    yield! t.GetRuntimeFields()     |> Seq.filter (fun m -> m.IsPublic) |> Seq.map cast
    yield! ti.DeclaredConstructors  |> Seq.filter (fun m -> m.IsPublic) |> Seq.map cast
    yield! ti.DeclaredNestedTypes   |> Seq.filter (fun ty -> ty.IsNestedPublic) |> Seq.map cast
} |> Array.ofSeq

https://github.com/Microsoft/visualfsharp/blob/master/src/fsharp/FSharp.Core.Unittests/LibraryTestFx.fs


2016-11-29 11 / 24

SpiseMisu.SemanticVersioning

● Handle cases like the Fsharp.Core does … (+ more):

– The main issue with basic Reflection, is that it works 
great with C# libraries, but not so much with F#. The 
following functions signatures are represented on the 
same way in .NET canonical form (no curried arguments):

let foo (x,y) = x + y
let bar x y = x + y

(* both represented as *)
x:System.Int32 * y:System.Int32 -> z:System.Int32

(* but should be respectively *)
x:System.Int32 * y:System.Int32 -> z:System.Int32
x:System.Int32 -> y:System.Int32 -> z:System.Int32



2016-11-29 12 / 24

SpiseMisu.SemanticVersioning

● Handle cases like the Fsharp.Core does … (+ more):

– Other constructs such as Product Types, Modules and even Enums & Sum 
Types (due to pattern matching) needs to be handled in a special way:

● Cases like Active/Partial Patterns and MeasureOfUnits are not handled (yet? Is it 
even necessary?)

● Please look into the Open Source code to see what is done for each case

● Main goal is to create a bijective function that would replace the 
non-injective and surjective function which will ensure that a 
given input value will always have a unique output value. Think of 
it as a perfect hash function with no collisions

https://en.wikipedia.org/wiki/Perfect_hash_function


2016-11-29 13 / 24

SpiseMisu.SemanticVersioning

non-injective and surjective bijective

https://en.wikipedia.org/wiki/Surjective_function
https://en.wikipedia.org/wiki/Bijection


2016-11-29 14 / 24

SpiseMisu.SemanticVersioning

● Similar readability as Haskell and Elm signatures (last 
type is the return value while the others are input 
parameters). Example:

FooBar : Foo  (Bar * Baz)  Qux→ →

Note: This is also why I now write F# code like this:

let foobar : int  (int * int)  int =→ →

    fun x (y,z)  x + y + z→



2016-11-29 15 / 24

SpiseMisu.SemanticVersioning

● .NET Library (Assembly):

– Is usually a single file compiled to target a specific version of the .NET 
Framework. Example:

mscorlib,Version=4.0.0.0, Culture=neutral,PublicKeyToken=...

● .NET NuGet package:

– Is a unit of distribution containing some metadata as well as binaries. 
In most cases,  there are binaries targeting several versions of the 
.NET Framework.

Note: We are only interested in libraries (lib/…/*.ddl)

https://www.youtube.com/watch?v=xmjvOLlCdFU&t=484


2016-11-29 16 / 24

SpiseMisu.SemanticVersioning
.NET NuGet package
#!/usr/bin/env fsharpi

#I @"./SpiseMisu.SemanticVersioning/"
#r @"SpiseMisu.SemanticVersioning.dll"

open System    
open System.Diagnostics
open System.Reflection

open SpiseMisu

let pkgid = @"Newtonsoft.Json"

let assembly =
  Assembly.LoadFile
    @"./packages/Newtonsoft.Json.7.0.1/lib/net45/Newtonsoft.Json.dll"

Semantic.Versioning.nugetbump
  pkgid
  NuGet.dotNet.Net45
  assembly
|> printfn "%s"

Semantic.Versioning.nugetdiff
  pkgid
  NuGet.dotNet.Net45
  (Some "7.0.1")
  pkgid
  NuGet.dotNet.Net45
  None
|> Array.iter(printfn "%s")



2016-11-29 17 / 24

SpiseMisu.SemanticVersioning
.NET Library (Assembly)

#!/usr/bin/env fsharpi

#I @"./SpiseMisu.SemanticVersioning/"
#r @"SpiseMisu.SemanticVersioning.dll"

open System    
open System.Diagnostics
open System.Reflection

open SpiseMisu

let released =
  Assembly.LoadFile
    @"./packages/Newtonsoft.Json/lib/net45/Newtonsoft.Json.dll"
let modified =
  Assembly.LoadFile
    @"./packages/Newtonsoft.Json.7.0.1/lib/net45/Newtonsoft.Json.dll"

Semantic.Versioning.asmbump released modified
|> printfn "%s"

Semantic.Versioning.asmdiff released modified
|> Array.iter(printfn "%s")



2016-11-29 18 / 24

SpiseMisu.SemanticVersioning
.NET Library (documentation)

#!/usr/bin/env fsharpi

#I @"./SpiseMisu.SemanticVersioning/"
#r @"SpiseMisu.SemanticVersioning.dll"

open System    
open System.Diagnostics
open System.Reflection

open SpiseMisu

let assembly =
  Assembly.LoadFile
    @"./packages/Newtonsoft.Json/lib/net45/Newtonsoft.Json.dll"

Semantic.Versioning.markdown assembly
|> Array.iter(printfn "%s")



2016-11-29 19 / 24

SpiseMisu.SemanticVersioning
.NET Library (raw)

#!/usr/bin/env fsharpi

#I @"./SpiseMisu.SemanticVersioning/"
#r @"SpiseMisu.SemanticVersioning.dll"

open System    
open System.Diagnostics
open System.Reflection

open SpiseMisu

let assembly =
  Assembly.LoadFile
    @"./packages/Newtonsoft.Json/lib/net45/Newtonsoft.Json.dll"

Semantic.Versioning.raw assembly
|> Set.toArray
|> Array.iter(fun (prefix, body) -> printfn "%s - %s" prefix body)



2016-11-29 20 / 24

Demo



2016-11-29 21 / 24

What’s next?

● Publish a blog post for F# Advent Calendar 2016

● Release Open Source library @ GitHub

● Review of code by .NET experts

https://sergeytihon.wordpress.com/2016/10/23/f-advent-calendar-in-english-2016/
https://github.com/spisemisu


2016-11-29 22 / 24

What’s next?

● Integrated in:

– NuGet (or something similar, please steal with pride)

– FAKE

– Paket

● To catch on with C# Community, it has to be totally 
transparent and with no F# related stuff. Therefore I will 
need a standalone executable (something like paket.exe)

Note: I'm thinking about using Mono mkbundle 

https://www.nuget.org/
http://fsharp.github.io/FAKE/
https://fsprojects.github.io/Paket/
http://www.mono-project.com/archived/guiderunning_mono_applications/


2016-11-29 23 / 24

Summary

● Semantic Versioning

– Set of Rules

● elm-package bump and diff
– SemVer rules enforced by the code itself

● SpiseMisu.SemanticVersioning library
– Support for Assemblies and NuGet as well as C#/F# (even proprietary due to Reflection)

– SemVer rules are also enforced by the code itself, just like elm-package

– Output is markdown

● Demo

● What’s next?
– Open Source library as well as standalone binary

– Integration with NuGet, FAKE, Paket



2016-11-29 24 / 24

Q & A

Any Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

