
Limiting side-effects of
applications at compile time

2019-08-12 @ BornHack, Funen (Denmark)

https://bornhack.dk/bornhack-2019/program/#/event/limiting-side-effects-of-applications-at-compile-time

2019-08-12 2 / 25

Overview

● About me (very shortly)

● How and why is it relevant (benefits)

● Demo (OSM + MET)
– NixOS : 5ab28d2f7e09bb8027ebc881343b381b8001543a611e8f3566b80c0d9b3a9b47

– Docker : 5e0e931f4070495f7329f1d1b61120b354bcae84c29186f79688a6e924959b98

● Note: Slides are released under the CC BY-SA license
– Creative Commons Attribution-ShareAlike (“copyleft”)

https://creativecommons.org/licenses/by-sa/4.0/

2019-08-12 3 / 25

About me (very shortly)

● Ramón Soto Mathiesen (Spaniard + Dane)

● MSc. Computer Science and minors in Mathematics

● CompSci @ SPISE MISU ApS
– Trying to solve EU GDPR with a scientific approach (https://uniprocess.org)

● Permissive copyleft license (LGPL-3.0)

– Mostly with Haskell and to a lesser extend Elm (PureScript)

● Member of the Free Software Foundation (FSF) since November 2007
● Founder of Meetup F#unctional Copenhageners EST. November 2013

● Blog: http://blog.stermon.com/ (slides under /talks/)

https://spisemisu.com/
http://www.eugdpr.org/
https://uniprocess.org/
https://copyleft.org/
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.fsf.org/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://blog.stermon.com/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/

2019-08-12 4 / 25

Matching of expectations

● You don’t need to know Haskell in order to understand this talk
(Out of curiosity, how many devs? statically type?)

● In this talk, we will see how it’s possible to limit the side-effects
of an application at compile-time (translate code to binary)

● We will also see why this is relevant and which benefits we get
by using this approach

Note: Please save your question to the QA at the end of the talk

2019-08-12 5 / 25

The tool

● Haskell is a standardized, general-purpose, purely functional
programming language with non-strict semantics (lazy) and
strong static typing

● Haskell is widely used in the academia, but lately, it’s also
beginning to catch up in the industry, thanks to companies like
FP Complete and Galois Inc in the States and Tweag.IO in Europe

https://haskell.fpcomplete.com/
https://galois.com/
https://www.tweag.io/
https://www.haskell.org/

2019-08-12 6 / 25

Effects vs Purity

● In Haskell, there is a clear separation, which is enforced by
the type system and the compiler, between pure code (always
evaluate to the same output given the same input and does not
cause any side effects such as mutation of mutable objects or
output to I/O devices) and code that produces effects:

Parent calls children Parent with effects Parent pure

Child with effects ✓ Code with effects ✗ Compiler error

Child pure ✓ Code with effects ✓ Pure code

https://www.haskell.org/

2019-08-12 7 / 25

Effects vs Purity

https://xkcd.com/1312/
https://www.haskell.org/

2019-08-12 8 / 25

Effects vs Purity

● All Haskell applications have a parental code branch with all
possible input and output effects (I/O).

● This is what allows us to create all kinds of applications
(equivalence with Turing complete languages)

● If this were not the case, we could not be able to provide
inputs or see the output of the calculations and, therefore, it
would be a waste of time to execute any application

https://www.haskell.org/

2019-08-12 9 / 25

Restrict effects, granularly

● Now, it’s not always the case that if a branch of the code
is allowed to have side effects, these should be all the
possible side effects

● For example: We want to send confidential data to a
database, but we do not want our subcontractor, who
manages that part of the code, to send such sensitive
information to their own servers

https://www.haskell.org/

2019-08-12 10 / 25

What is happening? Data leaks

ssh-decorator (Python package) leaks your SSH data

https://old.reddit.com/r/Python/comments/8hvzja/backdoor_in_sshdecorator_package/

2019-08-12 11 / 25

What is happening? Data leaks

strong_password (Ruby library) backdoor paste.bin

https://nakedsecurity.sophos.com/2019/07/09/backdoor-discovered-in-ruby-strong_password-library/

2019-08-12 12 / 25

Cybersecurity

●

Cybersecurity now a days, just consist in stemming the tide of the unavoidable !!!

https://www.theverge.com/2016/5/5/11592622/this-is-fine-meme-comic

2019-08-12 13 / 25

Cybersecurity

●

Cybersecurity now a days, just consist in stemming the tide of the unavoidable !!!

https://www.theverge.com/2016/5/5/11592622/this-is-fine-meme-comic

2019-08-12 14 / 25

Cybersecurity

●

Cybersecurity now a days, just consist in stemming the tide of the unavoidable !!!

2019-08-12 15 / 25

Bridge over Troubled Water

● In Haskell, the bridge that is responsible for binding
the pure code in combination the with code
containing effects, is called monads

● Monads are structures that represent calculations
defined as a sequence of steps.

https://www.haskell.org/

2019-08-12 16 / 25

Bridge over Troubled Water

● So these bridges that are responsible for binding the pure code with
the code branches with effects, can do so gradually allowing us to
make sure that if we only allow a part of the code to access the
network, it can only do that side-effect

● For example: We want to ensure (by design) that our application only
accesses the content of a specific page in the network (effect) where
that content should be displayed on the output device of the console
(another effect) adding date and time stamps (third effect)

https://www.haskell.org/

2019-08-12 17 / 25

Code example (Demo)

granulated -- Granulation of effects
 ::
 (Effects.ConsoleOutM io
 , Effects.DateTimeM io
 , Effects.SpecificWebsiteM io
)
 => io ()
granulated =
 ...

main :: IO () -- Signature of the main entrance of the application
main =
 -- By binding the main function with our granulated function, the
 -- application, is automatically isolated to the designated effects
 granulated

https://www.haskell.org/

2019-08-12 18 / 25

Code example (Demo)

-- DESIGN OF EFFECTS (no implementation details)

class Monad m => ConsoleOutM m where
 out :: String -> m ()

class Monad m => DateTimeM m where
 now :: m UTCTime
 today :: m (Integer,Int,Int)

class Monad m => SpecificWebsiteM m where
 tlsManager :: m Manager
 request :: String -> m Request
 responseBytes :: Request -> Manager -> m (Response L8.ByteString)
 responseNoBody :: Request -> Manager -> m (Response ())

https://www.haskell.org/

2019-08-12 19 / 25

Code example (Demo)

-- IMPLEMENTATION OF EFFECTS

instance ConsoleOutM IO where
 out = putStrLn

instance DateTimeM IO where
 now = getCurrentTime
 today = toGregorian . utctDay <$> getCurrentTime

instance SpecificWebsiteM IO where
 request relativeUrl = parseRequest $ uri ++ relativeUrl

...

uri = -- Haskell has immutable data, so this can’t be changed
 "https://@specificwebiste.com/"

https://www.haskell.org/

2019-08-12 20 / 25

All effects vs limited (Demo)

All effects (I/O) vs Granulated (Output to the Console Time and Date Specific Page)∪ ∪

All the possible
effects of I/O

SP

DT

OC

https://www.haskell.org/

2019-08-12 21 / 25

Principle of Least Privilege (PoLP)

● This approach is well known in information security and
computer science as principle of least privilege (PoLP)
where a process, a user, or a program (depending on the
subject) must be able to access only the information and
resources that are necessary for its legitimate purpose

● Haskell, among very few, can enforce this at compile-time

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://www.haskell.org/

2019-08-12 22 / 25

Design and outsource

● Thanks to the granulation of effects, it would be enough for
companies to design and implement the effects layer and then
outsource the development to anyone with the necessary
knowledge, even the best black-hat hackers, knowing that the
code they receive will comply (*) 100% with their initial design

(*) compiler flags needed to avoid unsafePerformIO usage:
… -XSafe -fpackage-trust -trust=base …

https://en.wikipedia.org/wiki/Black_hat
https://www.haskell.org/

2019-08-12 23 / 25

(very) Relevant cos EU GDPR

● “One example: The requirement for data minimization (Article 5(1)(c))
means that you must be able to demonstrate that every business process
that touches personal data (and every technology that contributes to it) is
designed in such a way that it uses the smallest possible amount of data
for the shortest possible period of time while exposing it to the fewest
possible eyeballs and ensuring that it is deleted as quickly as possible
when the processing purpose is completed" -- Tim Walters

● ICO (UK) to fine British Airways with 183m GBP and Marriot with 99m GBP

https://www.linkedin.com/pulse/why-so-many-smart-people-stupid-gdpr-tim-walters-ph-d-
https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2019/07/ico-announces-intention-to-fine-british-airways/
https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2019/07/statement-intention-to-fine-marriott-international-inc-more-than-99-million-under-gdpr-for-data-breach/
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2019-08-12 24 / 25

Summary

● Effects vs Purity, and what it brings to the table

● Restrict effects, granularly (all effects vs limited)

● Cybersecurity (“All your data leaks are belong to us”)

● Principle of Least Privilege (PoLP) at compile-time

● Design and outsourcing (even to the best black-hat hackers)

● EU GPDR: “data protection by design and by default”, previously known as “privacy by
design” to avoid getting fined and live up to the law from a “technical point-of-view”

● Demo (https://reproducible-builds.org/ -> reproducible hashes for binaries):
– NixOS : 5ab28d2f7e09bb8027ebc881343b381b8001543a611e8f3566b80c0d9b3a9b47

– Docker : 5e0e931f4070495f7329f1d1b61120b354bcae84c29186f79688a6e924959b98

https://reproducible-builds.org/
https://reproducible-builds.org/

2019-08-12 25 / 25

Q & A

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

